Research

We study the adaptive design of cooperative relationships. How do cooperative animals choose, maintain, and regulate their social relationships?

The background: Evolution of cooperation is a central theme of biology. Cooperative traits pose an evolutionary puzzle because non-cooperative traits should exploit the public good of cooperation. Evolutionary theory has largely solved this puzzle with three key ideas. First, inclusive fitness theory shows why natural selection can favor altruism towards kin. Second, reciprocity theory shows that helping can be evolutionarily stable (even among non-kin) if giving help is conditional on receiving it. Third, biological market theory shows that cooperators can ensure mutual benefit by choosing or avoiding partners based on the supply, demand, and relative returns of alternative partners.

The problem: The mechanisms enforcing cooperation have been demonstrated in systems that are easy to manipulate in the lab (e.g. microbes, plants, ants). In more complex vertebrate societies (including humans), the mechanisms stabilizing cooperation are controversial. In part this is because a large gap exists between evolutionary models of cooperation and our understanding of the psychological mechanisms that underlie the helping decisions of individual animals. In contrast to traditional models of reciprocal cooperation, reciprocity in vertebrates often appears to takes place in the context of a stable social bond, that might be analogous to a human friendship. Yet we don’t know how these relationships develop, why they develop, or whether they have an adaptive design.

Our goal is to use experiment and observation to test predictions–from inclusive fitness theory, reciprocity theory, and biological market theory–about the design of cooperative relationships. What behaviors make cooperation evolutionarily stable? Do cooperative relationships require cooperative investments that can be exploited by others, or does cooperation emerge as the byproduct of purely selfish behavior? What information do animals use to make decisions about whether to cooperate with others? How do individuals weigh different social factors such as kinship vs familiarity, or information from recent vs older social interactions?

Theme 1. Cooperation in vampire bats: We study the cooperative relationships of vampire bats (pictured left on my shoulder) because they form long-term bonds and performs natural, frequent, and costly helping behaviors that can be monitored, measured, and manipulated over long time-periods.
bat on shoulderVampires are long-lived obligate blood-feeders on a tight energy budget—they can starve to death after just 2-3 nights of unsuccessful hunting. They regurgitate food to offspring but also kin and nonkin adults, and decisions to donate appear to be based on past social experience. Reciprocal donation rates are eight times more important than genetic kinship for predicting food-sharing rates. Nonkin bonds appear to act as form of “social bet-hedging” because relying exclusively on a few kin donors is too risky.

It is possible to experimentally manipulate cooperative behavior by preventing sharing in specific pairs or by administering intranasal oxytocin or lethargy-inducing LPS. With Rachel Page at Smithsonian Tropical Research Institute, we are looking at how vampire bats that are strangers can eventually develop cooperative relationships. With Alex Ophir and Angela Freeman at Cornell University, we plan to look at the neuroendocrine basis of cooperation in bats. See my blog and publications for more information.

Theme 2: Cognitive ecology: To what extent does natural selection shape how animals learn? Is memory best viewed as a single general cognitive ability  or a series of task-specific specialized adaptations such as spatial memory or social memory? With Rachel Page at Smithsonian Tropical Research Institute, we are looking at the role of learning in the feeding behavior of vampire bats. In collaboration with the Organization for Bat Conservation, we can compare how different bat species think and learn.

Theme 3: The evolution and ecology of bat social life: How do different bat species interact with each other? How and what do they communicate with social calls? Do they forage together? Do they follow specific individuals? How often do they learn from each other about roosts or food? Do they work together to mob predators, search for food, or keep warm? Do they take any actions that only work if others’ participate? In collaboration with Simon Ripperger and Frieder Mayer at Museum fur Naturkunde, Berlin, Germany, and Rachel Page at the Smithsonian Tropical Research Institute, we are tracking foraging movements and looking for social foraging in free-ranging vampire bats using newly developed tracking devices placed on both bats and their “prey”.

Current Projects: (last updated July 5, 2017)

  • What is the social structure of the frog-eating bat? (with V. Flores, R. Page)
  • Is kin discrimination easier to detect than reciprocity? (with D. Farine, G. Schino)
  • How do new food-sharing bonds develop? (with R. Page, D. Farine)
  • Do vampire bats perform reciprocity? (with R. Page, D. Farine)
  • How does sickness affect cooperative behavior? (with S. Stockmaier, R. Page)
  • Is guano a cue to roost-finding in vampire bats? (with R. Page, J. Ratcliffe)
  • How do social bonds function outside the roost? (with S. Ripperger, F. Mayer)
  • Do food-sharing partners also share wounds on prey? (with S. Ripperger, F. Mayer)
  • Do social networks predict microbiome similarity (with K. Yarlagadda, A. Raulo, S. Ripperger)
  • Do vampire bat contact calls convey kinship?

 

One Response to Research

  1. Stream says:

    Great photos and videos on vampires!

    Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s